The Bonus Divisibility Rules

Here are a bunch of additional divisibility rules that can come in handy as well. These are divided into two categories:

- Composite Numbers
- Prime Numbers

Divisibility Rules – 16 Composite Numbers

Number	Rule	Example
8	Last 3 digits form a number divisible by 8.	2520
		→ 520 ÷ 8 ✓
9	Sum of digits divisible by 9.	$2520 \\ \rightarrow 2 + 5 + 2 + 0 = 9 \checkmark$
	Divisible by both 3 and 4.	3 + 3 + 2 + 0 = 9 2520
12		→ ÷ 3 & ÷ 4 √
1.4	Divisible by 2 and 7.	2520
14		→ ÷ 2 & ÷ 7 ✓
15	Divisible by 3 and 5.	2520
		→ ÷ 3 & ÷ 5 ✓
16	Last 4 digits divisible by 16.	2520
		→ ÷ 16 X 2520
18	Divisible by 2 and 9.	→ ÷ 2 & ÷ 9 ✓
		2520
20	Last 2 digits are divisible by 20 (00, 20, 40, 60, 80).	\rightarrow ends in 40 \checkmark
21	Divisible by 3 and 7.	2520
21		→ ÷ 3 & ÷ 7 ✓
22	Divisible by 2 and 11. Divisible by 3 and 8.	2520
		$\rightarrow \div 2 \& \div 11 X$ 2520
24		2520 → ÷ 3 & ÷ 8 ✓
		475
25	Ends in 00, 25, 50, or 75.	\rightarrow ends in 75 \checkmark
26	Divisible by 2 and 13.	2520
20		→ ÷ 2 & ÷ 13 ✓
27	Sum of digits, repeated if needed, divisible by 27.	2520
		$\rightarrow 2 + 5 + 2 + 0 = 9 \text{ X}$
28	Divisible by 4 and 7.	2520
		→ ÷ 4 & ÷ 7 √ 2520
30	Divisible by 2, 3, and 5.	$\rightarrow \div 2, \div 3, \div 5 \checkmark$
		. 2, . 3, . 3 \

<u>Divisibility Rules – 6 Prime Numbers</u>

The divisibility rule of these numbers can be generalised as follows:

 $\mathbf{R} \pm \mathbf{a} \times \mathbf{L}$

The Bonus Divisibility Rules

Where:

- $R = rest \ of \ the \ number \ (excluding \ last \ digit)$
- $L = last \ digit$
- a = a multiplier specific to each prime

Prime	Rule $(R \pm a \times L)$	Example
13	R – 9L or R + 4L	$1286 \rightarrow 128 - 9 \times 6 = 74 \text{ X}$
17	R – 5L	$221 \to 22 - 5 \times 1 = 17 \checkmark$
19	$R \pm 2L$	$1133 \rightarrow 113 + 6 = 119 \text{ X}$
23	$R \pm 7L$	$276 \rightarrow 27 + 42 = 69 \checkmark$
29	R + 3Lor R – 2L	$7203 \rightarrow 720 - 6 = 714$? $714 \rightarrow 71 - 8 = 63$ X
31	R-3L	$186 \to 18 - 18 = 0 \checkmark$